
Stanford Research
Computing

O N B O A R D I N G T O T H E
S H E R L O C K

H i g h P e r f o r m a n c e
C o m p u t i n g C l u s t e r

A p r i l 5 , 2 0 2 3

https://srcc.stanford.edu/

https://srcc.stanford.edu/

Agenda
• Intro to SRCC and HPC
• Sherlock’s layout, storage, partitions, limits
• Submitting jobs
• Modules
• Installing software
• Typical HPC workflow
• Estimating your job’s resources
• Questions?

Download slides here- https://srcc.stanford.edu/events/series/sherlock-boarding-session
Video of this presentation- https://youtu.be/iqq7GGqMRg8

https://srcc.stanford.edu/events/series/sherlock-boarding-session
https://youtu.be/iqq7GGqMRg8

SRCC- Our Group
Stanford Research Computing Center
We manage and support:
• Sherlock
• SCG Genomics Cluster
• Farmshare
• Carina Secure Computing Environment
• ICME
• Oak HPC Storage
• PHS

https://srcc.stanford.edu/
https://www.sherlock.stanford.edu/
https://login.scg.stanford.edu/
https://web.stanford.edu/group/farmshare/cgi-bin/wiki/index.php/Main_Page
https://carinadocs.sites.stanford.edu/
https://icme.stanford.edu/resources/hpc-compute-resources/icme-cluster
https://oak-storage.stanford.edu/
http://med.stanford.edu/phs.html

What is High Performance Computing (HPC)
“HPC generally refers to the practice of aggregating computing power in a

way that delivers much higher performance than one could get from a
typical desktop computer or workstation in order to solve large problems.”

– Inside HPC

§ When Will I Need It?
Almost every field of research where simulations, large computation or
data is needed: Astrophysics, Social Sciences, Biology, Chemistry,
Economics. Most common software run on Sherlock: R, Matlab, and
Python

For computing needs above and beyond what your
laptop/desktop can handle, in terms of CPUs, RAM, time, storage
and I/O

5

Personal Computers vs. High Performance Computers

Mac Book Pro Laptop
• 2 cores (1 CPU)

• 16 GB RAM
• 512GB Solid State Disk

Typical Sherlock Node

• AMD EPYC 32-Core Processors, others have
24 CPUs in two sockets, Intel 2.4GHz Xeon
Skylake CPU, up 256 CPUs can be run at
once on Sherlock, 8,192 CPUs for owners.

• 192GB RAM

• Some nodes have 128 CPUs, 1TB RAM
• 100TB scratch storage, 1TB group home,

200GB local Solid State Disk

• Infiniband connection 100GB/s between
nodes and storage (Scratch, Oak and Home)

• GPU nodes (NVIDIA Kepler K80, K40, Volta
V100)

• Big memory nodes (512GB, 1.5 and 4TB
RAM)

A key difference – Laptop vs. HPC Cluster
Running on a cluster with SLURM is different than running your code on a
laptop. If you run an R script on your laptop, R will take as much of
whatever CPU/time/RAM it needs from the operating system. You may
notice that all other programs will grind to a halt.

So those 2 cores and 16GB of RAM on your laptop are pretty much
allocated.

However: on a cluster you have access to thousands of CPUs, a large
parallel filesystem and lots of RAM. But we need to use a job scheduler
(SLURM) to allocate, limit and control those resources. We also have a
queue to deal with user contention for those resources.

You need to explicitly ask for those resources from the scheduler in an
sbatch file with #SBATCH directives. And sometimes…you must wait.

Just remember your laptop does not have 512 CPUs, a gigabit network
connection and a 100TB hard drive.

Parallel Processing

your
program

in an
sbatch

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

On a cluster multiple tasks
(instances of your code)
can be submitted via a job
scheduler to many CPUs
and servers at once

Pass multiple arguments to
your code at once

For example, if you need to
process 500 files with your
script, these can be
processed at once rather
than serially

Multiple instances of your
code can run
simultaneously across the
cluster

No need to wait for 2 or 3
cores and limited RAM on a
laptop or desktop to be
available

SLURM

8

Where is Sherlock? - SRCF Data Center @SLAC
An example day-
IT load 489 kW
Facility load 582 kW

Racks
Servers(nodes)
UPS
Generators
Networking/Fiber
Cooling
Electrical

Sherlock’s user growth since 2016

5,726 users from 916 research groups, 176 owner
partitions
6 PB scratch, 28 PB long term Oak storage

Stanford Data Risk Classifications
https://uit.stanford.edu/guide/riskclassifications

https://uit.stanford.edu/guide/riskclassifications

Sherlock System Overview

generic compute
nodes

specialized
nodes,bigmem,
GPU, data
transfer (DTN)$SCRATCH$HOME

1,454 compute nodes

Filesystems,
storage servers

Infiniband
interconnect

You login.sherlock.stanford.edu

Login nodes

You connecting
with ssh
yourSUnet@login.sherlock.stanford.edu
OR http://login.sherlock.stanford.edu

$OAK

mailto:yourSUnet@login.sherlock.stanford.edu

Connecting to Sherlock
From your local system (laptop/desktop)

$ ssh <sunetid>@login.sherlock.stanford.edu

Mac- use the Terminal app

Windows
Cygwin
"Windows Subsystem for Linux" (WSL)

Linux
ssh

More info: Connecting to Sherlock

https://support.apple.com/guide/terminal/open-or-quit-terminal-apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://cygwin.com/
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://www.sherlock.stanford.edu/docs/getting-started/prerequisites/

Web browser access to Sherlock
Access Sherlock with your browser - https://login.sherlock.stanford.edu/
• open a shell session
• move, copy files from your laptop to Sherlock
• edit files

OnDemand Documentation

https://login.sherlock.stanford.edu/
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/

Sherlock Partitions
Partition- a logical and physical set of nodes (servers, computers) in a cluster

What partitions can I run on? Run: sh_part
or
scontrol show partition | egrep -B1 "AllowGroups=.*$(id -gn $user).*" | awk -F= '/PartitionName/ {print
$2}’

What nodes are in the partition, CPUs/RAM/node?
sinfo -Nlp normal

Partition Number of Nodes

normal 154

owners 1,203

hns 95

bigmem (512GB-4TB RAM) 3

gpu 26

dev 2

Your PI’s or groups nodes ?

15

Sherlock hns partition
Open to all users from the School of Humanities and Sciences (Political

Science , Statistics, Sociology, Communication, Economics
Departments, etc.)

95 Compute nodes (servers)
3,216 CPUs
2 Large memory nodes .5 TB RAM
4 128 CPU nodes with 1TB RAM

To use add
#SBATCH -p hns
to your submission scripts

Check hns layout:
sinfo -Nlp hns

16

Sherlock serc partition for users from School of
Sustainability
Open to all users from the School of Earth
132 Compute nodes (servers)
5,456 CPUs
64 GPUs
14 128 CPU nodes with 1TB RAM

To use add
#SBATCH -p serc
to your submission scripts

To see if you can run on serc use the sh_part command

Check serc’s layout:
sinfo -Nlp serc

The HPC Condo Model

Sherlock faculty (PIs) can buy 1 or more nodes (starting at about $7,500)

• The PI’s group members will have exclusive use of these nodes
• Access to idle resources in the owners partition of 1,158 nodes
• An owner’s group members will be able to use up to 8,192 CPUs at

once in the owners partition
• However, jobs in the owners queue are preemptible, if the owner of the

node you are running on wants to use those resources, your job is
terminated. So these jobs need to be checkpointed in some way. Or
at least you need to be able to logically aggregate the data at that
state and restart processing. On Sherlock preempted jobs in owners
are automatically re-queued 5 times.

Sherlock node orders

https://www.sherlock.stanford.edu/docs/overview/concepts/
https://www.sherlock.stanford.edu/docs/overview/orders/process/

Sherlock Filesystems
Home and Group Home, backed up, snapshotted and replicated, no purge policy
$HOME 15 GB
$GROUP_HOME 1 TB

Scratch- fast i/o Lustre parallel filesystem, your jobs should write/read here (3
month purge policy- if a file is not modified after 3 months it is deleted)

$SCRATCH 100 TB
$GROUP_SCRATCH 100 TB
$OAK $42.95 per 10TB/month, no purge policy

$L_SCRATCH ~200GB (some nodes will have more)
Local to your job’s node, even faster, but gets deleted at the end of your job- move your
results/data to your $SRATCH or $GROUP_HOME when job ends, just add the mv/cp at
the end of your sbatch script. Most users don’t need to use $L_SCRATCH

http://www.sherlock.stanford.edu/docs/user-guide/storage/filesystems/

run sh_quota to see what is available to you

Use the rclone command to connect to your cloud storage accounts, great for back-ups,
submit back-ups as a recurring job

https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
http://www.sherlock.stanford.edu/docs/user-guide/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/data-transfer/
https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/

I/O on Sherlock’s Filesystems
• When running jobs always try to use the $SCRATCH, $GROUP_SCRATCH or

$LOCAL_SCRATCH to store data for computation instead of $HOME and
$GROUP_HOME

• Do not submit large numbers of jobs (your R, Python, Matlab, C++ code etc.) which open,
read and close the same file(s) several times per second from each of your code’s
processes for a single CPU.

• This can lead to thousands of processes opening and closing the same file
simultaneously.

• This may put a huge strain on the whole filesystem affecting all users on Sherlock. We
may need to pause/end these jobs

• Check your code’s loops, test on command line in a dev session (use sdev or srun
commands) with a single job first to make sure that it works as expected before
submitting many of jobs

• Verify your job is not starting thousands of processes when only requesting a couple of
CPUs, this can be checked by SSH'ing to the node allocated to the job, then run pstree -
au $USER or htop on the node. Use squeue -u $USER to see what node you are
running on

20

Oak Storage for HPC
Oak:

An affordable storage for HPC- $42.95 per 10TB / month, billed
monthly. The Oak storage system is mounted on Sherlock. SFTP and
Globus connections are available. Oak is a parallel, capacity-oriented
HPC storage system designed for long term storage . Aliased as $OAK
on Sherlock.

Data on Oak is not backed-up. You can use cloud transfer tools such
as rclone to send data to your Google Drive accounts. Note: there may
be transfer/allocation limits for your Google accounts.

More info-
https://oak-storage.stanford.edu/

https://www.sherlock.stanford.edu/docs/storage/data-transfer/
https://www.sherlock.stanford.edu/docs/storage/data-transfer/
https://oak-storage.stanford.edu/

Sherlock User Limits
• How long can I run?
• How many jobs can I submit?
• How many CPUs can I use at once?

These limits can change, so view partition limits with sacctmgr or sh_part commands

sacctmgr show qos format=Name,MaxTRESPerUser,MaxSubmitJobsPerUser,MaxJobsPerUser,MaxTresPerAccount,MaxWall

Name MaxTRESPU MaxSubmitPU MaxJobsPU MaxTRESPA MaxSubmitPA MaxWall
---------- ------------- ----------- --------- ------------- -----------

normal cpu=256 1000 cpu=512 2000 2-00:00:00
dev cpu=4,mem=16G 2 cpu=99999 32 02:00:00

long cpu=32 20 16 40 7-00:00:00
bigmem cpu=128,mem=4T 10 mem=6T 20 1-00:00:00

gpu gres/gpu=16 50 gres/gpu=24 100 2-00:00:00
owner* cpu=99999 3000 cpu=99999 5000 7-00:00:00

owners cpu=16384 3000 cpu=32768 5000 2-00:00:00

When you see srun: error: Unable to allocate resources: Requested node configuration is not available
It’s because your job request went over these limits. Note that some limits apply group-wide (Max
CPUs/account) In SLURM PI group=Account

Tip- Minimizing jobs in the queue

For jobs >2 days use QOS long (#SBATCH --qos=long) However, no needed if you’re in an owner’s group,

*If your PI is an owner, you will see this with sh_part command

https://www.sherlock.stanford.edu/docs/advanced-topics/job-management/

User Limits cont.
MaxTRESPU Maximum number of CPUs/GPUs a user can use at once
MaxSubmitPU Maximum number jobs a user can submit at once
MaxTRESPA Maximum number number of CPUs/GPUs your PI group (account) can use at once
MaxSubmitPA Maximum number jobs your PI group (account) can submit at once
MaxJobsPU Maximum number jobs a user can have running at any given time
MaxWall Maximum time a job can run

Sometimes upon submitting your job or when viewing your squeue output you
see:

MaxCpuPerAccount
This means that others in your group are currently running on all the CPUs

that are available for them to use.
To see who is running these jobs in your group run-
$squeue -A ruthm -o "%.18i %.9P %.8j %.8u %.2t %.C %.L"

(where ruthm is your PI/Faculty sponsor/group name)

Find your PI group name with:
$id -gn

Check your CPU/memory/time/job limits with the sh_part command

Error messages

SLURM/sbatch/application error messages can be a bit hard to
understand.

• Always try to Google the error messages, helpful to add “sbatch” or
“SLURM” to the search. For example “tensorflow sbatch”

• When sending an email to srcc-support@stanford.edu always include
relevant info, commands used, error messages, your sbatch file

• Don’t hesitate to ask us for help

Sherlock troubleshooting tips

mailto:srcc-support@Stanford.edu
https://www.sherlock.stanford.edu/docs/user-guide/troubleshoot/

Fairshare
Basically the more resources you use- CPU/RAM/time/nodes in a 2 week

sliding window the lower your Fairshare score is which means the more
likely your jobs will wait in the queue when other user’s jobs are running.

or
A resource scheduler ranks jobs by priority for execution. Each job's priority
in queue is determined by multiple factors, among them the user's
fairshare score. A user's fairshare score is computed based on a target
(the given portion of the resources that this user should be able to use)
and the user's effective usage, i.e. the amount of resources (s)he
effectively used in the past. As a result, the more resources past jobs have
used, the lower the priority of the next jobs will be. Past usage is computed
based on a sliding window and progressively forgotten over time. This
enables all users on a shared resource to get a fair portion of it for their
own use, by giving higher priority to users who have been underserved in
the past.

Sherlock also uses backfill, smaller jobs can go in front of larger jobs, often
regardless of the users Fairshare factor, thus increasing our clusters
utilization. So if you can, use less (CPU/RAM/nodes/time)

Fairshare
Fairshare scores and your job’s place in the queue is a moving target-

Jobs end for various reasons:
SLURM has no idea when a user’s application launched by srun/sbatch

will exit.
It can only know what time was requested with --time/-t in the
srun/sbatch. If an application ends before the time allocation request
then SLURM obviously can’t predict or know this and your place in the
queue will change accordingly.

A user may cancel jobs, this will free up resources, sometime many
resources (CPUs/memory) are freed when a user scancel’s jobs or the
application/script called in that job’s sbatch ends

Thus sshare -a -A <your group name> changes constantly along with
squeue output

https://slurm.schedmd.com/sshare.html

Common software pre-installed on Sherlock
We take care of a lot of installations-
Matlab
R
Python
Stata-mp
K-nitro
Gurobi

Sherlock provides 431 software packages, in 7 categories, covering 77 fields of science

A complete listing of all modules on Sherlock

Search for modules you need with the module spider command

All stored as modules-
$module avail
--- math -- numerical libraries, statistics, deep-learning, computer science ---

R/3.4.0 py-keras/2.3.1_py36 (g)
R/3.5.1 (D) py-numpy/1.14.3_py27 (D)
R/3.6.1 py-numpy/1.14.3_py36
armadillo/8.200.1 py-numpy/1.17.2_py36
arpack/3.5.0 py-numpy/1.18.1_py36
caffe2/0.8.1 (g) py-onnx/1.0.1_py27
cgal/4.10 py-pytorch/0.2.0_py27 (g)
cudnn/5.1 (g) py-pytorch/0.2.0_py36 (g)
cudnn/6.0 (g) py-pytorch/0.3.0_py27 (g,D)
cudnn/7.0.1 (g) py-pytorch/0.3.0_py36 (g)
cudnn/7.0.4 (g) py-pytorch/1.0.0_py27 (g)
cudnn/7.0.5 (g) py-pytorch/1.0.0_py36 (g)

https://www.sherlock.stanford.edu/docs/software/list/

27

Module Commands
Module documentation on Sherlock

module load -”loads” the software, it temporarily updates your path ($PATH) so that when you call the code, it will execute
module purge to start fresh
module list to see what you have loaded
module info
module keyword
module spider to search
$module spider numpy*
will find all modules that match the numpy pattern

Note that modules are in categories. For example if you want to use numpy in your Python code you will load it with the
math category-

$module spider numpy

For detailed information about a specific "py-numpy" package (including how to load the modules) use the module's full
name.

$module spider py-numpy/1.18.1_py36

$module load math py-numpy/1.18.1_py36

Sometimes you don’t want certain dependent modules that are loaded with the one you want, so use module - (module with
a “minus sign)

module load python/2.7
$ pip2.7 install --user numpy==1.11.0

unload the py-numpy module that is automatically loaded as a dependency:
$ module load -py-numpy

https://www.sherlock.stanford.edu/docs/software/modules/

Scheduling Jobs*
Why Do We Need to Schedule a Job?
Resource contention between users needs to be balanced. So, the

compute resources are managed and workloads are balanced using a
job scheduler- SLURM.

How Easy Is It to Schedule a Job?
Basic concept - tell the scheduler:

1. What resources you need- CPUs, RAM, time, partition
2. What it should do- load modules, run your code
3. Need to request as few resources as you need so your jobs pend

for as little time as possible, profile jobs with top, htop sacct

*Job= an instance of your program submitted to the scheduler (SLURM)

https://slurm.schedmd.com/

Sample Batch Job
#!/bin/bash
#SBATCH --job-name=test
#SBATCH --time=10:00
#SBATCH -p normal
#SBATCH -c 1
#SBATCH --mem=8GB
below you run/call your code, load modules, python, Matlab, R, etc.
and do any other scripting you want
lines that begin with #SBATCH are directives (requests) to the scheduler-SLURM
module load python/3.6.1
module load py-keras/2.2.4_py36
python3 mycode.py
__
Edit with vim/nano/vi/OnDemand file manager , save the file as test.sbatch
To run:
$sbatch test.sbatch
To watch:
$ squeue -u $USER
Many ways to control jobs as they run, scontrol pause/update, scancel

Output and error files will be placed the same directory that your sbatch script was run in.
slurm-916753.out
slurm-916753.err
Look in these files while debugging

https://youtu.be/GXmnS_rY_88

https://wiki.gentoo.org/wiki/Vim/Guide
https://wiki.gentoo.org/wiki/Nano
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/
https://youtu.be/GXmnS_rY_88

sbatch file format is important

Slurm will ignore all #SBATCH directives after the first non-comment line
(the first line in the script that doesn't start with a # character).

• Always put your #SBATCH parameters at the top of your batch script.
• Spaces in parameters will cause #SBATCH directives to be ignored

Slurm will ignore all #SBATCH directives after the first white space. For
example directives like these:

#SBATCH --job-name=big job
#SBATCH --mem=16 GB
#SBATCH --partition=normal, owners

will cause all following #SBATCH directives to be ignored thus the job is
submitted with the default parameters (6GB, 1 CPU, 2 hours, normal
partition). More info

https://www.sherlock.stanford.edu/docs/getting-started/submitting/

sbatch flags, full and abbreviated

Full Option Abbreviated Description
--job-name= -J Give your job a name
--partition= -p Partition to run on

--nodes= -N Total number of nodes (use for MPI or codes that communicate across nodes)

--ntasks= -n Number of "tasks". Use if your code can do distributed parallelism

--cpus-per-task= -c # of CPUs allocated to each task. For use with shared memory parallelism.

--ntasks-per-node= Number of "tasks" per node, use with distributed parallelism.

--time= -t Maximum walltime of the job in the format D-HH:MM:SS (e.g. --time=1- for one day
or --time=4:00:00 for 4 hours)

--constraint= -C specific node architecture (if applicable)
--mem-per-cpu= Memory requested per CPU (e.g. 10G for 10 GB)

--mail-user= Mail address (alternatively, put your email address in ~/.forward)

--mail-type= Control emails to user on job events. Use ALL to receive email notifications at the
beginning and end of the job.

SLURM gives you a choice for some options; full or abbreviated. For example if you want
the job to run for exactly 3 hours, in your sbatch file:
#SBATCH --time=3:00:00
or
#SBATCH -t 3:00:00

sbatch vs srun

sbatch command
• submits your job to the queue for later execution.
• non-blocking, you can submit with sbatch and logoff the cluster
• $sbatch jobscript.sbatch

srun command
• srun is used to submit a job in real time, useful for debugging
• used to get a interactive session and resources
• $srun -c 2 --mem=32GB --time=3:00:00 -p normal --pty bash
• used within an sbatch for job arrays
• sdev is a type (wrapper) of srun

srun in the submission script will create SLURM job steps. srun is used to launch the processes. If your
program is a parallel MPI program, srun takes care of creating all the MPI processes. If not, srun will run
your program as many times as specified by the --ntasks= option.

Bottom line: unless your application is multithreaded or MPI enabled don’t bother calling srun in your sbatch
script. Read the docs on your applications to check if they can support multithreading or MPI.

More on SLURM commands

https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/

Parallel example with SLURM Job Arrays
Job arrays offer a mechanism for submitting and managing collections of similar jobs quickly

and easily; job arrays with thousands of tasks can be submitted in milliseconds (subject to
configured size limits). All jobs must have the same initial options (e.g. size, time limit, etc).
Array jobs are usually limited to 1000 steps.

Here only one job is submitted to the schedular with 24 array steps. Note the files are named
to match array task ID ($SLURM_ARRAY_TASK_ID)

!/bin/bash
#SBATCH --job-name=array_zip # Job name
#SBATCH -p owners
#SBATCH --ntasks=1 # Run a single task
#SBATCH --mem-per-cpu=1gb # Memory per processor
#SBATCH --time=00:10:00 # Time limit hrs:min:sec
#SBATCH --output=array_%A-%a.out # Standard output and error log
#SBATCH --array=1-24 # Array range, how many steps or times you want to run your app, in this case gzip
#Do your work here
gzip SRR062634.$SLURM_ARRAY_TASK_ID.filt.fastq

Same thing can be done with parameter values or other arguments to your code- map
arguments to your code with $SLURM_ARRAY_TASK_ID

Note: The --ntasks parameter is only useful if you have commands that you want to run in
parallel within the same batch script, i.e. your code is multithreaded or MPI enabled.
This example and the next slide’s are examples of an embarrassingly parallel problem- little
or no effort is needed to separate the problem into a number of parallel tasks. There is no
dependency or need for communication between the parallel tasks or for the results
between them. These are some of the most common types of jobs run on Sherlock.

https://slurm.schedmd.com/job_array.html
https://www.sherlock.stanford.edu/docs/advanced-topics/job-management/

Job Arrays- creating array indexes
Here I have named my input files to match $SLURM_ARRAY_TASK_ID so they
can be indexed by the job and each file (task) launched independently. You
can do the same with any arguments or parameters to your code,
python/MATLAB/R script

Job arrays- squeue output
Below you can see the 24 array steps all launching across
the cluster at once on different nodes

Embarrassingly Parallel Example with Job Arrays

A very simple example, you have 384 files to zip-

#!/bin/bash
#SBATCH --array=1-384%10
#SBATCH -n 1
#SBATCH -p owners
#SBATCH -t 5:00
gzip SP1_${SLURM_ARRAY_TASK_ID}.fq

Note that #SBATCH --array=1-384%10 will tell the schedular “submit my application- in this case gzip,
384 times in chunks of 10 jobs at a time. This is optional, you can leave out %10. One reason to
limit the submissions is that you may encounter a limit for max # CPUs a user or group can run at
once (MaxTRESPerUser, MaxTresPerAccount). See slide 20. Also, note that the files can be
renamed to match the array step numbers with a shell loop. (for i in `seq 1 384`; do cp SP1.fq
SP1_${i}.fq; done).

• Any parameter value, argument to your code can be used as an array step with
${SLURM_ARRAY_TASK_ID}.

• Rather than being run serially on 1 or 2 CPU’s on your laptop, on a cluster there are often
thousands of CPUs so all 384 files (jobs) are processed (submitted to the scheduler with the
sbatch command) at once. The scheduler needs to allocate jobs->resources.

• File I/O will be faster, clusters use a parallel filesystem, Lustre
• On Sherlock you can run on up to 256 (8,196 for owners) CPUs at once
• An excellent discussion of job arrays: https://blog.ronin.cloud/slurm-job-arrays/

:%20https:/blog.ronin.cloud/slurm-job-arrays

srun SLURM tasks- an example of resource control

#!/bin/bash
#SBATCH --ntasks=8
#SBATCH --time=1:00
#SBATCH --mem=8GB
can add more sbatch options above
echo hello from $SLURM_JOB_NODELIST
Output:
hello from sh-30-02

In SLURM terminology, a task is an instance of a running program.
If your program supports communication across computers (MPI) or you plan on
running independent tasks in parallel, request multiple tasks with --ntasks= , the
default value is set to 1.
Your program will require a certain amount of memory to function properly. To see
how much memory your program needs, you can check the documentation or run it
in an interactive session and use the htop command to profile it. To specify the
memory for your job, use the mem-per-cpu option.

Sherlock has defaults to make job submission easier for users- 1 CPU, 6GB RAM, 2
hours. If unsure, always start with the defaults i.e. don’t ask for any resources.

srun SLURM tasks example cont.
change last line to:
srun echo hello from $SLURM_JOB_NODELIST
Output:
hello from sh-27-[17,20]
hello from sh-27-[17,20]
hello from sh-27-[17,20]
hello from sh-27-[17,20]
hello from sh-27-[17,20]
hello from sh-27-[17,20]
hello from sh-27-[17,20]
hello from sh-27-[17,20]

A task in SLURM analogous to a process in Unix, i.e. a running instance of a program with
it’s own memory and CPU allocation.

Task allocations are controlled by the user via SLURM.

You can see in the last example that the command was not only run 8 times (8 tasks) but run
across the cluster on 2 different nodes (sh-27-17, sh-27-20). Used for multithreaded
applications and MPI. SLURM allows a lot of resource granularity. For example if you
want one process that can use 16 cores for multithreading use srun with:

--ntasks=1
--cpus-per-task=16

Matlab multicore example with MATLAB's parfor
#!/bin/bash
#SBATCH -c 16
#SBATCH -t 15:00
#SBATCH -p hns
module load matlab
echo $SLURM_CPUS_PER_TASK

submit:
$srun -c $SLURM_CPUS_PER_TASK matlab -nosplash -nodesktop -r "pfor”
As a rule of thumb, the number of CPUs requested by a job should always match the number of threads or processes it will start.

So here we use -c 16 giving this job 16 CPUs

Typical HPC Cluster Workflow

move code, data to cluster

get code running
install dependencies, packages

load/search modules. Are they already on
Sherlock?

run code on a dev node (sdev/srun)
How much RAM/CPU/time is needed?

scale-up and run for real with sbatch

scp, sftp, rsync,
rclone,

OnDemand File
Manager

nano, pip, gcc,
make module

spider numpy*

sdev -h, srun,
htop, sacct,

ps

sbatch, squeue,
srun, scontrol,
salloc, scancel

Typical Sherlock workflow
1. move your code and data to Sherlock
2. test debug and install packages/software, load modules

ml load python
pip install <package> --user

ml load python/3.6.1
pip3 install <package> --user

Is the software already on Sherlock? Chances are if it’s popular we have it.

module spider numpy*

R packages you can install yourself
If you have a lot of R packages to add, try to install on the command line rather than with the
R Studio GUI.

For some compiled applications, install, compile with module load gcc, so don’t worry about
error messages stating that you

need to be root/have sudo to install since you can install in directories you control.

https://www.sherlock.stanford.edu/docs/software/using/R/

Typical Sherlock workflow cont.
3. If your code runs fine, test it with some data on an actual compute node (so

you are not limited by login node memory limits (cgroups):

run sdev/srun command

How much CPU/RAM/time do I need?

Always try the defaults (by not requesting CPUs/RAM/time in your
sbatch/srun)

On Sherlock defaults are: 1 CPU, 6GB RAM and 2 hours , normal partition

See how much memory your code/job used
While job is running use sstat or scontrol show job <jobID>
sstat --format

JobID,NTasks,nodelist,MaxRSS,MaxVMSize,AveRSS,AveVMSize 66807122

After jobs completes use sacct
sacct -j 66808759 --format

JobID,NTasks,nodelist,MaxRSS,MaxVMSize,AveRSS,AveVMSize

https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/

A typical example of user installed and compiled from
GitHub

Here I want to install and compile seqtk

1. git clone https://github.com/lh3/seqtk.git
2. cd seqtk
3. make

Permanently add the seqtk binary location to you path:
4. echo 'export PATH=$PATH:$GROUP_HOME/$USER/seqtk' >> $HOME/.bashrc
5. source $HOME/.bashrc
6. seqtk

https://github.com/lh3/seqtk

A typical example of user installed and compiled
software, modifying library path

Here I want to install and compile WFDB

1. wget https://archive.physionet.org/physiotools/wfdb.tar.gz
2. tar xfvz wfdb.tar.gz
3. cd wfdb-10.6.2

4. In your .bashrc add the path to the directory where you install it.
In this case I’m installing in $GROUP_HOME,
So update your LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=$GROUP_HOME/$USER/wfdb-10.6.2
To permanently update your .bashrc -
echo export LD_LIBRARY_PATH=$GROUP_HOME/$USER/wfdb-10.6.2 >> $HOME/.bashrc

5. ml load gcc
6. (in my $GROUP_HOME I made the directory WFDB, you can choose your $HOME also)
7. ./configure --prefix=/home/groups/ruthm/mpiercy/wfdb-10.6.2/WFDB
8. make
9. make install
10. make check

https://archive.physionet.org/physiotools/wfdb.shtml
https://archive.physionet.org/physiotools/wfdb.tar.gz

Estimating your codes resources with sdev and htop
1. sdev (or srun --pty bash)
2. load modules, run code in background
$python mycode.py > /dev/null 2>&1 &
$htop
htop to see only your processes-
type u then your login name, hit return
or just-
$htop -u <your user name>
You will see how many CPUs, threads and how much RAM your
application is using in real-time.

https://hisham.hm/htop/

htop example on a dev or compute node

$srun -c 4 matlab -nosplash -nodesktop -r "pfor" > /dev/null 2>&1
$htop

Estimate your job’s resource requirements with sacct
sacct -o reqmem,maxrss,averss,elapsed -j 20222292

ReqMem MaxRSS AveRSS Elapsed
---------- ---------- ---------- ----------

1024Mn 00:00:10
1024Mn 579K 579K 00:00:10
1024Mn 90K 90K 00:00:10
1024Mn 524K 524K 00:00:05

ReqMem = memory that you asked from SLURM. If it has type Mn, it is per node in MB, if Mc, then it is MB per core
MaxRSS = maximum amount of memory used at any time by any process in that job. This applies directly for serial
jobs. For parallel jobs you need to multiply with the number of cores (max 16 or 24 as this is reported only for that node
that used the most memory)
AveRSS = the average memory used per process (or core). To get the total memory need, multiply this with number of
cores
Elapsed = time it took to run your job

sacct -o reqmem,maxrss,averss,elapsed,alloccpu -j 426651
ReqMem MaxRSS AveRSS Elapsed AllocCPUS

---------- ---------- ---------- ---------- ----------
4Gn 00:08:53 1
4Gn 3552K 5976K 00:08:57 1
4Gn 2921256K 2921256K 00:08:49 1

Here, the job came close to hitting the requested memory, 4 GB, 2.92 GB was used. Note that SLURM only samples a
job’s resources every few minutes, so this is an average. Jobs with a MaxRSS close to ReqMem can still get an
out of memory (OOM event) error and die. When this happens request more memory in your sbatch with --mem=

47

Estimate your batch job’s resource
requirements
sacct -o reqmem,maxrss,averss,elapsed,alloccpus -j 3413279
ReqMem MaxRSS AveRSS Elapsed AllocCpus
---------- ---------- ---------- ---------- -----------

16000Mc 1-20:54:49 4
16000Mc 4771852K 4603220K 1-20:54:49 4

The first line is the parent job, second is the job step, the actual job.
You've requested 16GB per core, i.e. a total of 64 GB (4x16GB, everything in one node)
Your job has used a maximum of 4771852K i.e. 4.7 GB per core
You've requested more than 10 GB too much memory per core i.e. about 50 GB too much in
total
So, ask for less memory for this kind of job, e.g. --mem=8GB

48

Look at past job efficiency with the seff command
seff displays statistics related to the efficiency of resource usage by a

completed job.
Usage:
seff <jobid>

$ seff 66594168
Job ID: 66594168
Cluster: sherlock

User/Group: mpiercy/ruthm
State: COMPLETED (exit code 0)
Nodes: 1

Cores per node: 12
CPU Utilized: 00:02:31
CPU Efficiency: 20.97% of 00:12:00 core-walltime

Job Wall-clock time: 00:01:00

Memory Utilized: 5.79 GB

Memory Efficiency: 12.35% of 46.88 GB

49

Look at Job efficiency with ruse

ruse is a command line tool used to measure a process' resource usage. It
periodically measures the resource use of a process and can help you
find out how much resource to allocate to your job. It will determine
the actual memory, execution time and cores that individual programs
or MPI applications need to request in their job submission options.

$ module load system ruse
$ ruse ./myapp

More info:
https://www.sherlock.stanford.edu/docs/user-guide/running-

jobs/#resource-requests

https://github.com/JanneM/Ruse
https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/
https://www.sherlock.stanford.edu/docs/user-guide/running-jobs/

sstat, srun- monitor resource usage as a job runs
sstat --format JobID,NTasks,nodelist,MaxRSS,MaxVMSize,AveRSS,AveVMSize 20267805

JobID NTasks Nodelist MaxRSS MaxVMSize AveRSS AveVMSize
------------ -------- -------------------- ---------- ---------- ---------- ----------
20267805.0 1 gpu-27-21 393953K 1912732K 393017K 1912732K

Compare these values to what you requested in your sbatch file or srun command

You can also quickly monitor your job’s memory and CPU usage as it run with srun and top
1. Find your job id with-
squeue –u $USER
2.
srun --jobid=1002961 top -b -n 1 -u $USER

Protip: Sort pending jobs in the queue by priority, the higher the number the sooner it will run.
Look for your name in the queue. For example on the normal partition-

squeue -o "%8i %8u %15a %.10r %.10L %.5D %.10Q" -p normal --state=PD | more

Estimating resources requirements, htop compute node
while job is running

$ sbatch TF_mnist.sbatch
Submitted batch job 20244339
$ squeue -u $USER

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
20244339 hns_gpu TF_mnist mpiercy R 0:04 1 gpu-27-21

$ ssh mpiercy@gpu-27-21

ssh to the server only of you have a job running on it, here it’s gpu-27-21
$ ssh mpiercy@gpu-27-21
use nvidia-smi -l 1 or module load system nvtop for GPU nodes

52

Videos

Create an sbatch file and submit it to the queue:
https://youtu.be/GXmnS_rY_88

Submit a MATLAB batch job:
https://youtu.be/ytAyF_KlpJc

Monitor a job:
https://youtu.be/89OK9pGnRJE

Show different Python environments:
https://youtu.be/DlqtQDriprQ

Installing and R package:
https://youtu.be/BshpaeJMAUs

https://youtu.be/GXmnS_rY_88
https://youtu.be/ytAyF_KlpJc
https://youtu.be/89OK9pGnRJE
https://youtu.be/DlqtQDriprQ
https://youtu.be/BshpaeJMAUs

Key Sherlock Links
Python
Matlab
R
submitting a job
Unix/Linux tutorials
modules
filesystems
Globus for large data transfers
Sherlock OnDemand: browser based access
moving data
Oak
job arrays
GPUs
Job array examples:
https://blog.ronin.cloud/slurm-job-arrays/

Nice examples of –ntasks vs. --ntasks-per-node vs. --cpus-per-task
Creating a parallel environment with sbatch directives

https://www.sherlock.stanford.edu/docs/software/using/python/
https://www.sherlock.stanford.edu/docs/software/using/matlab/
https://www.sherlock.stanford.edu/docs/software/using/R/
https://www.sherlock.stanford.edu/docs/getting-started/submitting/
https://www.sherlock.stanford.edu/docs/getting-started/prerequisites/
https://www.sherlock.stanford.edu/docs/software/modules/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/storage/data-transfer/
https://www.sherlock.stanford.edu/docs/user-guide/ondemand/
https://www.sherlock.stanford.edu/docs/storage/data-transfer/
https://www.sherlock.stanford.edu/docs/storage/filesystems/
https://www.sherlock.stanford.edu/docs/advanced-topics/job-management/
https://www.sherlock.stanford.edu/docs/user-guide/gpu/
https://blog.ronin.cloud/slurm-job-arrays/
https://support.ceci-hpc.be/doc/_contents/SubmittingJobs/SlurmFAQ.html

Please Acknowledge SRCC

It is important that publications resulting from computations performed on Sherlock,
Farmshare or SCG acknowledge this. The following wording is suggested for
your Acknowledgements section:

"Some of the computing for this project was performed on the Sherlock (or
XStream, Farmshare, Nero) cluster. We would like to thank Stanford
University and the Stanford Research Computing Center for providing
computational resources and support that contributed to these research
results."

Many researchers have: SRCC acknowledged publications

https://srcc.stanford.edu/srcc-enabled-publications

Support
Documentation

Sherlock: http://www.sherlock.stanford.edu/
Sherlock Office Hours :

https://www.sherlock.stanford.edu/docs/overview/introduction/#office-hours

Office hours via Zoom, for the time being.
https://stanford.zoom.us/j/95962823750?pwd=cFM2U2ZRQ243Zkx0Ry83akdtWU9zUT09
Tuesday 10-11am
Thursday 3-4pm

Drop by or make an appointment : https://calendly.com/srcc-officehours/sherlock

Check out Events listings for more workshops:
https://srcc.stanford.edu/events/upcoming-events

Contact
Questions/Answers: srcc-support@stanford.edu

SRCC group: http://srcc.stanford.edu
Mark Piercy: mpiercy@stanford.edu

http://www.sherlock.stanford.edu/
https://www.sherlock.stanford.edu/docs/overview/introduction/
https://www.sherlock.stanford.edu/docs/overview/introduction/
https://stanford.zoom.us/
https://stanford.zoom.us/j/95962823750?pwd=cFM2U2ZRQ243Zkx0Ry83akdtWU9zUT09
https://calendly.com/srcc-officehours/sherlock
https://srcc.stanford.edu/events/upcoming-events
mailto:srcc-support@stanford.edu
http://srcc.stanford.edu/
mailto:srcc-support@stanford.edu

